The 3-way vacuum solenoid valves in this series are 2-position valves with pneumatically servo-controlled conical shutters.

They can normally be used either open or closed.

They are composed of an anodised aluminium body, two vulkollan® shutters assembled onto a stainless steel stem, a membrane for servo-control made with special compounds and a thrust spring for the shutter return; an actuator activated by an electric coil managed the compressed air supply.

These valves allow reducing frictions and internal dynamic stresses to the minimum. the result being a high response speed and a guarantee of long lasting duration. The standard electric coil is fully plasticised with synthetic resin, tight execution, insulation class F (up to 155 °C) compliant with VDE standards, with 6.3 mm 3-terminal electrical connections in compliance with EN 175301-803 (ex DIN 43650). Protection degree IP 54; IP 65 for inserted connector.

Allowed tolerance on the voltage nominal value: ±10%.

Max. absorption: 16.5 V.A. in c.a. e 16 W in c.c.

The electric coil can be rotated by 360°. The connector can be rotated by 180° on the coil and can be supplied, upon request, with Led lights, anti-interference circuit and/or with protection devices against overvoltage and polarity reversal.

3-way vacuum solenoid valves are usually used for intercepting vacuum on feeders and cup stackers, robots, sheet feeders, sack openers and in all those cases where a quick response is needed between suction and the air inlet into the circuit, for a quick restoration of the atmospheric pressure.

They can be supplied upon request with an SM device for manually opening and closing the solenoid valves already installed.

Technical features

Working pressure: from 0.5 to 3000 mbar abs.

Servo-control pressure: see table

Temperature of the sucked fluid: from -5 to +60 °C

NO		
N U		X = Compressed air supply
	١.	P = Passage
	V	A = Service
V R P		R = Pump

Art.	Α	Max. capacity	Vacuun	n level	React	ion time	Ø	Passage	Servo-control	Weight
J (mbar	abs.	m	nsec		section	pressure	
	Ø	cum/h	min	max	exc.	deexc.	orifice	mm ²	*bar (g)	Kg
07 01 11	G1/4"	6	1000	0.5	16	27	8.5	56.8	4 ÷ 7	0.56
07 02 11	G3/8"	10	1000	0.5	16	27	11.5	103.8	4 ÷ 7	0.54

X = Compressed air supply

P = Pump A = Service

R = Passage

NO

X = Compressed air supply P = Passage A = Service

R = Pump

_	Art.	A Max. capacity		Vacuum level		Reaction time		Ø	Passage	Servo-con	trol Weight
				mbar abs.		msec			section	pressure	9
		Ø	cum/h	min	max	exc.	deexc.	orifice	mm ²	*bar (g)	Kg
0	7 03 11	G1/2"	20	1000	0.5	16	40	15.0	176	6 ÷ 8	0.73
_											

 $^{\star}\,$ Add the letters LP to the article for servo-control pressure 4 \div 6 bar (g).

SERVO-CONTROLLED 3-WAY VACUUM SOLENOID VALVES

4.22

X = Compressed air supply P = Pump

A = Service

R = Passage

X = Compressed air supply

P = Passage

A = Service

R=	Pump
----	------

Art.		A Max. capacity		Vacuum level		Reaction time		Ø	Passage 	Servo-control	Weight
				mbar abs.		msec			section	pressure	
		Ø	cum/h	min	max	exc.	deexc.	orifice	mm ²	*bar (g)	Kg
	07 04 11	G3/4"	40	1000	0.5	16	40	20	314	6 ÷ 8	1.25
(07 05 11	G1"	90	1000	0.5	18	42	25	490	6 ÷ 8	1.16

* Add the letters LP to the article for servo-control pressure $4 \div 6$ bar (g).

X = Compressed air supply P = Pump A = Service

A = Service

R = Passage

NO	
	T P

X = Compressed air supply

P = Passage A = Service

R = Pump

Art.			A Max. capacity		Vacuum level		tion time	Ø	Passage	Servo-control	Weight
74.4				mbar abs.		msec			section	pressure	
		Ø	cum/h	min	max	exc.	deexc.	orifice	mm²	*bar (g)	Kg
07 06 11		G1" 1/2	180	1000	0.5	60	38	40	1256	6 ÷ 8	4.79

 $^{\star}\,$ Add the letters LP to the article for servo-control pressure 4 \div 6 bar (g).